
1 INTRODUCTION 
Severe accidents are extremely rare in the nuclear 

power industry. However, as demonstrated by the 
Fukushima accident, rare events are not impossible 
events, and responding to these accidents can be ex-
tremely difficult. Severe Accident Management 
Guidelines (SAMGs) serve as a critical resource that 
would help operating crews respond to severe acci-
dents. Sandia is investigating whether dynamic PRA 
could improve SAMGs and thus human reliability.  

Dynamic, simulation-based Probabilistic Risk 
Assessment (PRA) methods can provide a scientific 
basis for supporting the diagnosis and response 
planning for current and future reactor designs. Re-
cent advances in computing enable simulation-based 
PRA approaches to explore thousands of accident 
scenarios. Coupling these scenarios with plant simu-
lations allows prediction of plant parameters and 
consequences associated with each accident scenar-
io. In effect, running thousands of advanced PRA 
simulations allows experts to explicitly map out the 
relationship between known accident scenarios and 
observable reactor parameters. Dynamic PRA offers 
a comprehensive understanding of the accident sce-
narios and the associated plant states. 

The methodology proposed in [Groth et al. 
(2014), Groth et al. (2013)] would allow the results 
of dynamic PRA to be harnessed to provide compre-
hensive, science-based support to operators facing 
severe accidents that fall beyond the scope of exist-

ing procedures, training, and experience. By formal-
ly encoding advanced PRA knowledge in SMART 
(Safely Managing Accidental Reactor Transients) 
SAMGs, we could reduce the socio-technical chal-
lenges associated with responding to severe acci-
dents, and provide an additional line of defense 
against events which have traditionally been related 
to Beyond Design Basis or residual risk. 

In this manuscript, we develop a proof-of-concept 
model for a sodium fast reactor (SFR) and which 
could be used to infer the state of the reactor with a 
subset of information that would be available during 
the accident as illustrated in [Groth et al. (2014)]. 
We then use the model to investigate whether such a 
model is capable of providing insight into which re-
actor parameters provide the most valuable infor-
mation for diagnosis. In the near term, the results 
could be used to determine which reactor parameters 
should be instrumented in the control room. In the 
longer term, the results would be a first step toward 
a full SMART procedures system. 

2 PROBLEM DESCRIPTION 
The prototype model is intended to focus on di-

agnosis of earthquake-induced Transient Overpower 
(TOP) scenarios, which may be protected or unpro-
tected, followed by long-term reduction in heat re-
moval, such as degraded cooling functionality, and 
primary pump trip (loss of flow, LOF).  
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The reactor model used in this study is a generic, 
small modular metallic fueled SFR with features 
adopted from the Advanced Liquid Metal Reactor 
design (see Figure 1). Some key design features 
which are relevant to modeling the selected accident 
sequences are: 

- Four Electro-Magnetic Pumps (EMP) – Pro-
vides force circulation in the primary system to 
cool the reactor core. These pumps may fail 
above 500oC operating temperature. 

- Direct Reactor Auxiliary Cooling System 
(DRACS) – Passive decay heat removal system 
(DHRS) which uses natural circulation to trans-
fer heat to air. 

- Inherent reactivity shutdown – the reactor sys-
tem exhibits strong negative reactivity feedback 
to increases in overall system temperature; thus 
the reactor can move from fission to decay heat 
levels without control rod insertion. 

3 SMART PROCEDURES FRAMEWORK 
The theoretical framework for developing 

SMART procedures involves coupling dynamic 
PRA, system simulations codes, and Bayesian Net-
works (BNs) to provide fast-running diagnostic sup-
port. [Groth et al. (2013), Groth et al. (2014)]. The 
methodology, as shown in Figure 2, takes outputs 
from an advanced PRA and aggregates them into a 
Dynamic Bayesian Network (DBN) to provide deci-
sion support. This coupled approach provides a pro-
cess for extensive and comprehensive modeling of 
both the accident space and the plant response, in a 
fast-running framework. The research team develops 
and executes a full spectrum of runs using Discrete 

Dynamic Event Trees (DDETs) coupled to a simula-
tion code (e.g., MELCOR, SAS4a); these runs are 
designed cover the expected state-space of the acci-
dent. BNs are used to synthesize and reduce this in-
formation into a framework that can be used for 
faster-than-real-time decision support. This infor-
mation is used in combination with PRA infor-
mation, e.g. system failure probabilities, to provide a 
detailed, probabilistic model of the accident se-
quence space. The resulting BN model is an exten-
sive knowledge base covering a wide spectrum of 
possible accidents, encoding the best-available 
knowledge from PRA to be used when needed. 

 

Figure 2. Conceptual process to develop risk-informed “Smart 
SAMG” procedures for nuclear power plant diagnostic support. 

4 METHODOLOGY  
The SMART procedures framework is imple-

mented using a combination of tools. The DBN 
models are generated in GeNIe [Druzdzel (1999)], 
which is a development environment for graphical 
decision-theoretic models developed by the Univer-
sity of Pittsburgh Decision Systems Laboratory. The 
structure of the model is built by the analyst. The 
model is built as a plate-based model containing 
nodes for accident states and reactor sys-
tems/components (outside of the temporal plate) and 
for plant parameters (inside the temporal plate). Arcs 
are directed based on known causal relationship be-
tween the accident sequences, the reactor system 
components, and the plant parameters. The accident 
nodes are modeled as target nodes in GeNIe. The 
number and size of the time steps in the DBN are se-
lected by the analyst. 

The SAS4a [Argonne National Laboratory 
(2011)] safety analysis code is used to simulate SFR 
accident characteristics. SAS4a is a system-level 
code that is capable of simulating SFR thermal-
hydraulics (core and RCS), neutronics, and liquid 
metal reactor accident phenomena. 

The data from the SAS4a simulations are pro-
cessed through a data processing system, which is 
shown in Figure 3. This process automates the quan-
tification of the DBN model by filling the condition-
al probability tables in GeNIe with conditional prob-
abilities based on external data. The system 

Figure 1. SFR SAS4a Nodalization 



discretizes the SAS4a results and uses the discre-
tized data to build a conditional probability tree that 
recorded the conditional probabilities of each ob-
served variable given each combination of target 
states. The nodes are assigned a conditional proba-
bility at each time step. These probabilities are con-
ditioned on the state of the reactor compo-
nent/system and accident state variables.  

To provide insight into which plant parameters 
are most important, we use Kullback-Leibler (KL) 
divergence [Cowell (2001)]. Formally, KL diver-
gence measures the distance between two probabil-
ity distributions (e.g., between two BN models). In 
probability theory, KL divergence is used to meas-
ure the amount of information lost when Q is used to 
approximate P. In a general probability application, 
P could be defined as the true distribution of the data 
and Q could be defined as a theoretical model of the 
data. For application to the current problem, KL di-
vergence is used to compare the master DBN models 
with a DBN without one plant parameter. 

Essentially, the KL divergence calculates the in-
formation lost when an arc is removed from the 
model [Vergara and Estévez (2014)]. 

∑ 𝑃(𝑖)𝑙𝑙𝑙�𝑃 (𝑖)
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In calculating the KL divergence of an arc in our 
BN, P(i) was the model with the arc we were meas-
uring while Q(i) was the model without the arc we 
were measuring. The values summed over i were 
combinations of possible observed and target states.   
KL divergence is calculated for each arc between the 
observation and target nodes in a method similar to 
that found in [Koiter (2006)]. Joint KL divergence 
calculations are conducted over all the target nodes 
for each observation node. In calculating the joint 
KL divergence, we treated each combination of pos-
sible target states as a single state in a joint target 
node that collected all targets into a single node.  

5 SAS4A SIMULATIONS 
The SAS4a calculations populate an event tree for 

various accident scenarios, operator actions, and dy-
namically-determined bifurcations in accident pro-
gression such as thermal pump failure. The accident 
scenarios investigated in this work are earthquake-
induced TOPs that involve axial and radial oscilla-
tions of the reactor, which are represented as sinus-

Figure 3. A class diagram of the sas4a data parser. Data is first read by the data parser, and then time steps are selected by 
the discretizer and discretized. This data is then transported by the network builder to the conditional class which calculates 
the conditional probabilities of each of the observed variables. 



oidal functions of reactivity insertion. The axial os-
cillations characterize movement of the control rods. 
Therefore, control rod expansion feedback is ne-
glected. This assumption is somewhat conservative 
since the controls rods tend to expand into the core 
as temperatures increase, thereby inserting negative 
reactivity; some thermal expansion into the core 
might still occur even with the rods oscillating. 

All accident scenarios assume a loss of balance of 
plant simultaneous with the earthquake reactivity in-
sertion begins (near time = 0 s). The DRACS is 
treated as functional, but the tube-to-air heat transfer 
coefficient for the air dump heat exchanger (ADHX) 
is variable (i.e. a DDET branch parameter) in the 
event tree calculations. The pump torque and exter-
nal reactivity tables are disabled in the SAS4a input 
to support dynamic pump trips and various reactivity 
insertions (e.g. earthquake and/or scram); instead, 
pump torque and external reactivity is linked to the 
control system input. Finally, pump coast-down is 
assumed constant in all scenarios with a 10 s halving 
time. Coast-down of the EMPs is an important safety 
feature for power and flow transients. 

The main event tree is comprised of 83 distinct 
SAS4A simulations with various boundary condi-
tions, some of which are determined dynamically by 
SAS4A such as thermal pump failure. The calcula-
tions are executed to 48hours of simulated time. The 
event tree also includes ‘nominal’ scenarios with no 
earthquake and reactivity excursion. These nominal 
scenarios also assume successful shutdown, loss of 
balance of plant, variable DRACS operation, and 
variable pump throttling by the operators. Another 
variation of a nominal scenario is simulated that has 
no earthquake and no scram, but a loss of balance of 
plant in combination with normal DRACS and pump 
operation. Such scenarios are investigated in order to 
provide baselines for comparison between nominal 

and severe/perturbed branches in the BN models. 
Thermal pump trip is assumed in some branches 

of the event tree calculations if SAS4a predicts cold 
pool temperature exceeding 878.5K. Pump trip is al-
so assumed as an operator action in some branches 
once cold pool temperature reaches 798K. Further 
discussion on the branch parameters for the event 
tree is given [Denman et al. (2015)]. 

The results for the event tree have time plotted on 
a log scale to highlight the broad time frames of the 
accident on a single figure: The reactivity excursion 
occurs between 1s and 50s, pump trip effects occur 
between 80s and 1000s, and long-term cooling (or 
lack thereof) by the DRACS is important between 
1000s to the end of the simulation (48hours or 
1.7x105 s). An example plot of fuel temperature can 
be seen in Figure 4. Note that if the operators were 
to attempt to enhance the heat transfer rate through 
the DRACS but instead impeded their performance, 
the fuel temperature would eventually increase until 
melting and fuel relocation occurs. The optimal de-
cision would be informed by the inferred state of the 
reactor system and the probability that enhancing the 
DRACS performance would be successful as op-
posed to compromising the integrity of the decay 
heat removal pathway. 

6 PROTOTYPE BN FOR SFR DIAGNOSIS 
6.1 BN Model Structure 

Figure 5 illustrates a dynamic conceptualization 
of the TOP and LOF diagnosis problem. This figure 
contains a plate-based dynamic BN modeling the re-
lationship between six reactor systems and compo-
nents (DHRS availability (DRACS system), four 
EMPs, and the scram system), one unmonitored 
physical state (differential pressure), five monitored 
plant parameters (pressure, coolant temperature, fuel 
temperature, power, and reactivity),and two accident 
states (transient overpower and loss of flow).  

The model structure shows that the four EMPs in-
fluence the amount of differential pressure; we as-
sume each pump has the same influence on the dif-
ferential pressure. The time-varying reactor 
parameters are duplicated once for each time step  
(100 time steps for the first hour (36s time steps), 47 
time steps steps for the remaining 47 hours (1hr time 
steps)). DHRS availability, scram status, and differ-
ential pressure each influence the state of all five 
plant parameters at each time step in the model. In 
this example model, the status of the DHRS, scram 
system, EMPs remain constant throughout the dura-
tion of the accident (i.e., they are modeled in the BN 
to either have failed or operational a priori, they do 
not fail during the accident). The scram system in-
fluences the state of the TOP node; this represents 
the definitional relationship wherein an unprotected 
TOP is defined by failure of the scram system. Simi-

Blue cases with 0.1 
multiplier on DRACS: leads 
to boiling and core damage

Cases with 
successful 
scram

No earthquake, no scram, 
loss of balance of plant

Pump trips

Reactivity insertion 
due to earthquake

Figure 4. SAS4a results for Maximum Fuel Temperatures. 
Blue lines correspond to simulations with degraded decay heat 
removal and red lines correspond to simulations with func-
tional decay heat removal. 



larly, the differential pressure influences the LOF 
state via a direct definitional relationship. 

6.2 Conditional Probability Tables 

6.2.1 Reactor systems and physical states 
The conditional probabilities for differential pres-

sure are derived directly from the causal relation-
ships between flow from the EMPs and differential 
pressure. High probabilities (0.95 and above) are as-
signed to the expected state of differential pressure 
based on EMP status. To accommodate the possibil-
ity that un-modeled factors could impact the rela-
tionship between EMPs and differential pressure, a 
nominal probability (ranging from 0.0001 to 0.025) 
was assigned to some states. Parameters are shown 
in Table 1Conditional probability tables for the reac-
tor systems (DRACS [DHRS availability], four 
EMPs, and the scram system) were directly assigned 
using probability values selected by experts, which 
are shown in Table 2.Values will be updated sources 

of information on SFR component reliability in 
SFRs become available. 
 
Table 2: Conditional probability table for reactor 
systems 

 State Cond. Probability  

DHRS 
availability 

Enhanced 0.15 
Available 0.8 
Unavailable 0.05 

EM Pumps Operational =1-P(failed) 
Failed 1.0E-06 

Scram (during 
earthquake) 

CRs_full_in 0.999 
CRs_out 0.001 

6.2.2 Accident states  
Since the LOF accident is defined by a loss of 

differential pressure, the conditional probability ta-
ble for LOF is deterministic; meaning the state of 
LOF is completely determined by the state of differ-
ential pressure. If there is 0% of the required differ-
ential pressure, a Total LOF has occurred. If there is 

Figure 5. Prototype Bayesian Network structure for diagnosis of LOF and TOP accidents in an SFR 



approximately 50% of the required differential pres-
sure, a Partial LOF has occurred. If there is approx-
imately 100% of the required differential pressure, 
there is no LOF.  

Probability of transient overpower was assigned 
by expert estimations (Table 3). 

 
Table 3. Conditional probability table for the occur-
rence of a TOP.  
Scram CRs_fully_in CRs_out 
Unprotected 0.0 0.9 
Protected 0.98 0 
None 0.02 0.1 

6.2.3 Monitored Parameters 
The SAS4a data are used to quantify the moni-

tored reactor parameter nodes. The SAS4a data are 
post-processed into matrices mapping known DHRS 
availability, differential pressure, and scram status 
onto the three plant parameters at each time step. 
The data in each time series was represented as a 
numeral value recording the simulated state of each 
of our five observation variables.  This time series 

data was parsed and discretized using an N-ary dis-
cretization procedure. The full results table contains 
and one column for each parameter at each time-
step. Multiple simulations are run for each possible 
system configuration to ensure comprehensive cov-
erage of uncertainties.  

After parsing and discretization, we calculated the 
conditional probabilities for each of the nodes in our 
DBN. If we let O be the number of observation 
nodes, T be the number of time steps, N be the num-
ber of bins for each observation node, and S be the 
number of target state combinations, then the num-
ber of conditional probabilities is ONST. For even 
our modest model where O = 5, T = 146, N = 3, and 
S =18 that is 39,420 conditional probabilities. There-
fore, due to space considerations, we present a time 
series of the conditional probabilities of just one ob-
servation variable for one target combination. Figure 
6 shows the results of this process on just the fuel 
variable for the target combination “CRS_fully_in, 
0pct, Enhanced”.  

7 VALUE OF REACTOR PARAMETERS 
KL divergence is used to gather insight into 

which plant parameters are most useful for diagnos-
ing the system failures that cause the two accident 
scenarios. The KL divergence is calculated between 
a model with and without causal paths between each 
of the reactor system nodes and each monitored pa-
rameter node. Figure 7 contains the results of KL di-
vergence calculated as a function of time for four of 
the modeled reactor parameters. 

The KL divergence results for “all targets” indi-
cate that coolant temperature, fuel temperature, and 
flow rate (in channel 5) each have high diagnostic 
power for the accident scenarios in this model. As 
shown in the figure, for each of the four parameters, 
the KL divergence is highest for the DHRS availa-
bility node at all time steps. For each reactor param-
eter, the results for scram and differential pressure 
are identical at all time steps.  

The results for primary coolant temperature show 
that the coolant temperature provides the highest di-
agnostic value for all target nodes. The diagnostic 
capability of coolant temperature slowly decreases 
during the first hour of the accident sequence, as 
coolant temperatures tend to converge after pump 
trip. After the pump trip, the differentiation in cool-
ant temperature response is dominated by availabil-
ity of the DHRS; this behavior is reflected in the in-
crease in KL divergence results after time step 100.  

The KL divergence for fuel temperature is equiv-
alent to that of the coolant temperature in all cases 
for all time steps. This behavior is expected because 
the high thermal conductive of the metallic fuel 
equalizes the fuel and coolant temperature, and 
therefore the two parameters should have identical 
behavior and therefore identical diagnostic power.  

Figure 6. Conditional probabilities for the fuel temperature 
top: high, middle: medium, bottom, low) given that Scram 
= “CRs_fully_in”, differential pressure = “0%” DHRS = 
“enhanced”. The figures show that under these conditions, 
fuel is highly likely to be “medium”. 



Results indicate that flow rate indicate is primari-
ly useful for joint diagnosis and is most useful as an 
individual diagnostic tool for decay heat removal 
availability, which would drive natural circulation 
flow through the core.  

The results for Power level are significantly dif-
ferent than for the other parameters. These results 
shows that the power level has very high diagnostic 
power at time step 0 (at the beginning of the acci-
dent), but that Power level has no diagnostic power 
for the remainder of the accident. This insight is 
what would be expected, because once the negative 
reactivity has stabilized the reactor, the ability to di-
agnose the reactor using power is extremely diffi-
cult.  

The results of the KL divergence analysis can be 
used to provide insight into which instruments oper-
ators should consult, or which instruments should be 
hardened to withstand severe accident conditions. 
Based on the results of the prototype model, two in-
truments would be most valuable: one for measuring 
flow, and one for measuring temperature. Power 
level does not provide high diagnostic power for the 
modeled accidents. Similarly, while both tempera-
ture measurements provide high diagnostic power, 

the fact that they provide identical diagnostic power 
indicates that only one of the measurements is truly 
necessary for diagnosis.  

8 CONCLUSIONS 

During severe accident progression, it may be dif-
ficult for operators to correctly diagnose and robust-
ly manage the accident. Given the “inherent safety” 
of advanced reactor designs, operators may even be 
tempted to respond to an accident when the best 
course of action would be to let the reactor respond 
to the accident per design. The prototype model 
documented in this report illustrates that BN models 
built with dynamic PRA information can provide 
valuable insight into severe accidents. The prototype 
model documented in Section 6 can provide essen-
tial insight into which reactor parameters are most 
valuable during severe accident situations. KL di-
vergence was explored as a tool to interrogate the in-
formation content of diagnostic variables within the 
BN. The results of this small example show that two 
reactor parameters, temperature and flow rate, have 
the highest diagnostic power for LOF and TOP acci-

Figure 7: KL divergence values for coolant temperature, fuel temperature, flow rate (in channel 5) and power. (Time steps 
0-100 represent the first hour of the accident, and time steps 101-147 cover the remaining 47 hours). 



dents resulting from an earthquake. The results also 
illustrate that either fuel temperature or coolant tem-
perature is equally predictive, and thus that only a 
single temperature measurement is necessary. The 
results also show that power level has no diagnostic 
power for these accident scenarios. The modeling 
results also conform to physical intuition about the 
accident progression, which supports the belief that 
BNs can be a useful tool to diagnosis other damage 
states and accident conditions.  

This model is a first step toward a SMART 
SAMG system. The same prototype model could 
provide real-time diagnostic support for TOP and 
LOF accidents, and real-time insight into the ex-
pected temporal progression of those accidents.  
Such a model would provide operators with the in-
formation they need to prevent unintended human 
interference with the reactor.  

Future work will be focused on expanding the 
model in depth and breadth. Key next steps include 
examining the impact of time discretization and re-
actor parameter discretization to assess whether dif-
ferent modeling choices would have greater predic-
tive power. The model will also be expanded to 
include a larger set of reactor parameters, which 
would allow for more insight into which parameters 
are most critical to harden via accident tolerant in-
strumentation. Longer term, the focus will be on ex-
panding the model to include a wider spectrum of 
accidents, beyond earthquake initiators to include 
traditional internally initiated anticipated operational 
occurrences, design basis accidents, and beyond de-
sign basis accidents. Together, these improvements 
provide a promising path toward building real-time, 
risk-informed operator support systems. 

9 ABBREVIATIONS 

- BN: Bayesian Network 
- DBN: Dynamic Bayesian Network 
- DDET: Discrete Dynamic Event Tree 
- DHRS: Decay Heat Removal System 
- DRACS: Direct Reactor Auxiliary Cooling System 
- EMP: Electromagnetic Pump 
- KL: Kullback-Leibler 
- PRA: Probabilistic Risk Assessment 
- LOF: Loss of Flow 
- SAMG: Severe Accident Management Guideline 
- SFR: Sodium Fast Reactor 
- SMART: Safely managing accidental reactor tran-

sients 
- TOP: Transient Overpower 
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